Saturday, September 10, 2016

New Scaffeta paper finds planetary resonance drives cosmic rays & climate change

A new paper by Dr. Nicola Scafetta et al published in Earth Science Reviews finds an astronomical origin of the ~2100-2500 year Hallstatt cycle found in "cosmogenic radioisotopes  (14C and 10Be) and in paleoclimate records throughout the Holocene."

The authors,

"show strong evidences for an astronomical origin of this cycle. Namely, this oscillation is coherent to a repeating pattern in the periodic revolution of the planets around the Sun: the major stable resonance involving the four Jovian planets - Jupiter, Saturn, Uranus and Neptune - which has a period of about p = 2318 years. Inspired by the Milanković’s theory of an astronomical origin of the glacial cycles, we test whether the Hallstatt cycle could derive from the rhythmic variation of the circularity of the solar system disk assuming that this dynamics could eventually modulate the solar wind and, consequently, the incoming cosmic ray flux and/or the interplanetary/cosmic dust concentration around the Earth-Moon system."
According to the authors,
"the rhythmic contraction and expansion of the solar system driven by a major resonance involving the movements of the four Jovian planets appear to work as a gravitational/electromagnetic pump that increases and decreases the cosmic ray and dust densities inside the inner region of the solar system, which then modulate both the radionucleotide production and climate change by means of a cloud/albedo modulation."




















Abstract

An oscillation with a period of about 2100–2500 years, the Hallstatt cycle, is  found in cosmogenic radioisotopes (14C and 10Be) and in paleoclimate records throughout the Holocene. This oscillation is typically associated with solar variations, but its primary physical origin remains uncertain. Herein we show strong evidences for an astronomical origin of this cycle. Namely, this oscillation is coherent to a repeating pattern in the periodic revolution of the planets around the Sun: the major stable resonance involving the four Jovian planets - Jupiter, Saturn, Uranus and Neptune - which has a period of about p = 2318 years. Inspired by the Milanković’s theory of an astronomical origin of the glacial cycles, we test whether the Hallstatt cycle could derive from the rhythmic variation of the circularity of the solar system disk assuming that this dynamics could eventually modulate the solar wind and, consequently, the incoming cosmic ray flux and/or the interplanetary/cosmic dust concentration around the Earth-Moon system. The orbit of the planetary mass center (PMC) relative to the Sun is used as a proxy. We analyzed how the instantaneous eccentricity vector of this virtual orbit varies from 13,000 BCE to 17,000 CE. We found that it undergoes a kind of pulsations and clearly presents rhythmic contraction and expansion patterns with a 2318 year period together with a number of already known faster oscillations associated to the planetary orbital stable resonances. There exists a quasi π/2 phase shift between the 2100–2500 year oscillation found in the 14C record and that of the calculated eccentricity function. Namely, at the Hallstatt-cycle time scale, a larger production of radionucleotide particles occurs while the Sun-PMC orbit evolves from more elliptical shapes (e ≈ 0.598) to more circular ones (e ≈ 0.590), that is while the orbital system is slowly imploding or bursting inward; a smaller production of radionucleotide particles occurs while the Sun-PMC orbit evolves from more circular shapes (e ≈ 0.590) to a more elliptical ones (e ≈ 0.598), that is while the orbital system is slowly exploding or bursting outward. Since at this timescale the PMC eccentricity variation is relatively small (e = 0.594 ± 0.004), the physical origin of the astronomical 2318 year cycle is better identified and distinguished from faster orbital oscillations by the times it takes the PMC to make pericycles and epicycles around the Sun and the times it takes to move from minimum to maximum distance from the Sun within those arcs. These particular proxies reveal a macroscopic 2318 year period oscillation, together with other three stable outer planet orbital resonances with periods of 159, 171 and 185 years. This 2318 year oscillation is found to be spectrally coherent with the Δ14C Holocene record with a statistical confidence above 95%, as determined by spectral analysis and cross wavelet and wavelet coherence analysis. At the Hallstatt time scale, maxima of the radionucleotide production occurred when, within each pericycle-apocycle orbital arc, the time required by the PMC to move from the minimum to the maximum distance from the Sun varies from about 8 to 16 years while the time required by the same to move from the maximum to the minimum distance from the Sun varies from about 7 to 14 years, and vice versa. Thus, we found that a fast expansion of the Sun-PMC orbit followed by a slow contraction appears to prevent cosmic rays to enter within the system inner region while a slow expansion followed by a fast contraction favors it. Similarly, the same dynamics could modulate the amount of interplanetary/cosmic dust falling on Earth. Indeed, many other stable orbital resonance frequencies (e.g. at periods of 20 years, 45 years, 60 years, 85 years, 159–171–185 years) are found in radionucleotide, solar, aurora and climate records, as determined in the scientific literature. Thus, the result supports a planetary theory of solar and/or climate variation that has recently received a renewed attention. In our particular case, the rhythmic contraction and expansion of the solar system driven by a major resonance involving the movements of the four Jovian planets appear to work as a gravitational/electromagnetic pump that increases and decreases the cosmic ray and dust densities inside the inner region of the solar system, which then modulate both the radionucleotide production and climate change by means of a cloud/albedo modulation.

Wednesday, September 7, 2016

New paper finds climate change & CO2 levels explained as a function of lagged solar activity

A new paper under open review for Earth System Dynamics finds Holocene climate change can be explained on the basis of lagged responses to changes of solar activity. According to the author,
This paper analyzes the lagged responses of the Earth’s climate system, as part of cosmic-solar-terrestrial processes. Firstly, we analyze and model the lagged responses of the Earth’s climate system, previously detected for geological and orbital scale processes, with simple non-linear functions, and we estimate a correspondent lag of ~1600-yr for the recently detected ~9500-yr scale solar recurrent patterns. Secondly, a recurrent and lagged linear influence of solar variation on volcanic activity and carbon dioxide (CO2) has been assessed for the last millennia, and extrapolated for future centuries and millennia. As a consequence we found that, on one side, the recent CO2 increase can be considered as a lagged response to solar activity, and, on the other side, the continental tropical climate signal during late Holocene can be considered as a sum of three lagged responses to solar activity, through direct, and indirect (volcanic and CO2), influences with different lags of around 40, 800 and 1600 years. 
Note the ~1600 year lag of response to solar activity is essentially the same as the well-known ~1500 year "never-ending climate cycle" identified by numerous peer-reviewed, published papers.

Note also the paper explains CO2 levels on the basis of a lagged function of solar activity, due to variations in solar heating of the oceans, and ocean in-gassing and out-gassing of CO2, not as a result of the ~4% CO2 contribution from mankind. 

The paper shows the (noisy) 1600-year climate cycle in the ice core 10Be proxy of solar activity of the past 1800 years peaked in the 1900's. The orange lines are modeled on the basis of a function of three lagged compenents of solar activity cycles and is currently on a downswing until ~2100, indicating potentially cooler Earth temperatures ahead. 




According to the author, "we propose the global ocean circulation processes, that include the well known meridional overturning circulation, and the thermohaline circulation, as a global mechanism capable of explaining the lagged forcing (volcanic activity & CO2) and continental tropical climate responses to solar activity variations."



The Earth’s climate system recurrent & multi-scale lagged responses: empirical law, evidence, consequent solar explanation of recent CO2 increases & preliminary analysis


Jorge Sánchez-Sesma

Received: 18 Aug 2016 – Accepted: 31 Aug 2016 – Published: 07 Sep 2016

Abstract. This paper analyzes the lagged responses of the Earth’s climate system, as part of cosmic-solar-terrestrial processes. Firstly, we analyze and model the lagged responses of the Earth’s climate system, previously detected for geological and orbital scale processes, with simple non-linear functions, and we estimate a correspondent lag of ~1600-yr for the recently detected ~9500-yr scale solar recurrent patterns. Secondly, a recurrent and lagged linear influence of solar variation on volcanic activity and carbon dioxide (CO2) has been assessed for the last millennia, and extrapolated for future centuries and millennia. As a consequence we found that, on one side, the recent CO2 increase can be considered as a lagged response to solar activity, and, on the other side, the continental tropical climate signal during late Holocene can be considered as a sum of three lagged responses to solar activity, through direct, and indirect (volcanic and CO2), influences with different lags of around 40, 800 and 1600 years. Thirdly, we find more examples of this ~1600-yr lag, associated with oceanic processes throughout the Holocene, manifested in the mineral content of SE Pacific waters, and in a carbon cycle index, CO3, in the Southern Atlantic. Fourthly, we propose the global ocean circulation processes, that include the well known meridional overturning circulation, and the thermohaline circulation, as a global mechanism capable of explaining the lagged forcing (volcanic activity & CO2) and continental tropical climate responses to solar activity variations. Finally, some conclusions are provided for the lagged responses of the Earth's climate system with their influences and consequences on present and future climate, and implications for climate modelling are preliminarily analyzed.

Thursday, August 25, 2016

Bombshell: New study confirms 'solar activity has a direct impact on Earth's cloud cover' important to climate change

A new study confirms "solar variations affect the abundance of clouds in our atmosphere," a solar amplification mechanism which is the basis of Svensmark's theory of cosmo-climatology. 
The solar eruptions are known to shield Earth's atmosphere from cosmic rays. However the new study, published in Journal of Geophysical Research: Space Physics, shows that the global cloud cover is simultaneously reduced, supporting the idea that cosmic rays are important for cloud formation. The eruptions cause a reduction in cloud fraction of about 2 percent corresponding to roughly a billion tonnes of liquid water disappearing from the atmosphere.

As Dr. Roy Spencer notes,

"The most obvious way for warming to be caused naturally is for small, natural fluctuations in the circulation patterns of the atmosphere and ocean to result in a 1% or 2% decrease in global cloud cover. Clouds are the Earth’s sunshade, and if cloud cover changes for any reason, you have global warming — or global cooling."
The IPCC models fail to consider multiple solar amplification mechanisms, including cosmic rays and numerous other amplification mechanisms, thereby ignoring that solar activity can explain the 0.7C global warming since the end of the Little Ice Age in 1850. Solar activity reached a grand maximum in the latter half of the 20th century, and accumulated solar energy (the 'sunspot integral') explains global temperature change since 1900 with greater than 97% statistical significance.  This new paper confirms that solar activity variation can account for a 2% variation in global cloud cover, sufficient to explain the warming of the 20th century and without any consideration of CO2 "radiative forcing."



Solar activity has a direct impact on Earth's cloud cover


Date:
August 25, 2016
Source:
Technical University of Denmark
Summary:
Solar variations affect the abundance of clouds in our atmosphere, a new study suggests. Large eruptions on the surface of the Sun can temporarily shield Earth from so-called cosmic rays which now appear to affect cloud formation.
A team of scientists from the National Space Institute at the Technical University of Denmark (DTU Space) and the Racah Institute of Physics at the Hebrew University of Jerusalem has linked large solar eruptions to changes in Earth's cloud cover in a study based on over 25 years of satellite observations.
The solar eruptions are known to shield Earth's atmosphere from cosmic rays. However the new study, published in Journal of Geophysical Research: Space Physics, shows that the global cloud cover is simultaneously reduced, supporting the idea that cosmic rays are important for cloud formation. The eruptions cause a reduction in cloud fraction of about 2 percent corresponding to roughly a billion tonnes of liquid water disappearing from the atmosphere.
Since clouds are known to affect global temperatures on longer timescales, the present investigation represents an important step in the understanding of clouds and climate variability.
"Earth is under constant bombardment by particles from space called galactic cosmic rays. Violent eruptions at the Sun's surface can blow these cosmic rays away from Earth for about a week. Our study has shown that when the cosmic rays are reduced in this way there is a corresponding reduction in Earth's cloud cover. Since clouds are an important factor in controlling the temperature on Earth our results may have implications for climate change," explains lead author on the study Jacob Svensmark of DTU.
Very energetic particles
These particles generate electrically charged molecules -- ions -- in Earth's atmosphere. Ions have been shown in the laboratory to enhance the formation of aerosols, which can serve as seeds for the formation of the cloud drops that make up a cloud. Whether this actually happens in the atmosphere, or only in the laboratory is a topic that has been investigated and debated for years.
When the large solar eruptions blow away the galactic cosmic rays before they reach Earth they cause a reduction in atmospheric ions of up to about 20 to -30 percent over the course of a week. So if ions affect cloud formation it should be possible to observe a decrease in cloud cover during events when the Sun blows away cosmic rays, and this is precisely what is done in this study.
The so-called 'Forbush decreases' of the cosmic rays have previously been linked to week-long changes in Earth's cloud cover but the effect has been debated at length in the scientific literature. The new study concludes that "there is a real impact of Forbush decreases on cloud microphysics" and that the results support the suggestion that "ions play a significant role in the life-cycle of clouds."
Arriving at that conclusion was, however, a hard endeavor; Very few strong Forbush decreases occur and their effect on cloud formation is expected to be close to the limit of detection using global atmospheric observations measured by satellites and land based stations. Therefore it was of the greatest importance to select the strongest events for study since they had to have the most easily detected effect. Determining this strength required combining data from about 130 stations in combination with atmospheric modeling.
This new method resulted in a list of 26 events in the period of 1987-2007 ranked according to ionization. This ranked list was important for the detection of a signal, and may also shed some light on why previous studies have arrived at varied conclusions, since they have relied on events that were not necessarily ranked high on the list.
Possible long term effect
The effect from Forbush decreases on clouds is too brief to have any impact on long-term temperature changes.
However since clouds are affected by short term changes in galactic cosmic radiation, they may well also be affected by the slower change in Solar activity that happens on scales from tens to hundreds of years, and thus play a role in the radiation budget that determines the global temperature.
The Suns contribution to past and future climate change may thus be larger than merely the direct changes in radiation, concludes the scientists behind the new study.

Story Source:
The above post is reprinted from materials provided by Technical University of Denmark. The original item was written by Morten Garly Andersen. Note: Content may be edited for style and length.

Journal Reference:
  1. J. Svensmark, M. B. Enghoff, N. J. Shaviv, H. Svensmark. The response of clouds and aerosols to cosmic ray decreasesJournal of Geophysical Research: Space Physics, 2016; DOI:10.1002/2016JA022689

Friday, July 29, 2016

Jupiter's Giant Red Spot is red hot & explained by the gravito-thermal greenhouse effect

A new paper published in Nature finds Jupiter's Great Red Spot is red hot at about 2,420°F or 1,330°C (i.e. almost hot enough to melt steel at 1425°C) and that this observation, 
"could solve the mystery of the unusually high temperatures observed throughout Jupiter's upper atmosphere, which can't be explained by solar heating alone. [nor by a radiative greenhouse effect]"
"Previous heat-distribution models suggested that Jupiter's atmosphere should be much cooler, largely because the planet is about fives times further from the sun than Earth is. So, having ruled out solar heating from above, the authors of the new research found evidence suggesting this atmospheric heating is largely driven by a combination of gravity waves and acoustic waves generated by turbulences in the atmosphere below the Great Red Spot.
"Giant planets like Jupiter are measured to be hundreds of degrees warmer than current temperature models predict. Before now, the extremely warm temperatures observed in Jupiter's atmosphere have been difficult to explain, due to the lack of a known heat source."
In other words, the very hot atmospheric temperatures on Jupiter cannot be due to an Arrhenius radiative greenhouse effect. The atmosphere of Jupiter is mostly comprised of the non-greenhouse gases hydrogen and helium, but does contain small amounts of the IR-active 'greenhouse' gas water vapor. However, the Maxwell/Clausius/Carnot gravito-thermal greenhouse effect perfectly explains the observed atmospheric temperature profile of Jupiter, making Jupiter the ninth planet in our solar system to follow the simple Poisson relationship of atmospheric mass/gravity/pressure to temperature. The Poisson relationship was demonstrated in another recent paper:

Referring to fig. 1 of the paper, we find at 0.1 bar pressure on Jupiter, the corresponding temperature is~112°K, and at 11 bars pressure corresponds to 400°K or 260°F:

Fig 1 from the paper. The dotted line is the atmospheric temperature vs. pressure curve on Jupiter. At 11 bars pressure, the temperature is 400°K or 127°C or 260°F.  
This satisfies the Poisson Relation (which in turn is derived from the Ideal Gas Law) previously demonstrated on 6 8 other celestial bodies in our solar system:


T/To = (P/Po)^0.286 ~= 400°K/112°K = (11 bar/0.1 bar)^.286

where
T = temperature at 11 bars pressure =  400°K
To= temperature at top of atmosphere = 112°K
P = 11 bars
Po= pressure at top of atmosphere = 0.1 bar

and once again demonstrates that the catastrophic anthropogenic global warming (CAGW) theory is a myth, that atmospheric temperatures are controlled by mass/gravity/pressure and are independent of greenhouse gas concentrations on any of these 9 planets with atmospheres, including Earth. Adding additional CO2 plant food to the atmosphere will undoubtedly green the Earth, but Earth's climate sensitivity to CO2 is effectively zero. 

Related: How can Uranus have storms hot enough to melt steel? A runaway greenhouse effect?


Jupiter's Great Red Spot is Also Red Hot, Study Shows

 | 

Jupiter's Great Red Spot is apparently also red hot: The highest temperatures ever observed on the planet were recently detected in the region above the ginormous storm.  
The Great Red Spot (GRS) is a massive storm about twice the diameter of Earth that lies in lowest layer of Jupiter's atmosphere. About 497 miles (800 kilometers) above this humongous storm, astronomers measured temperatures reaching about 700 degrees Fahrenheit (about 370 degrees Celsius) higher than normal, James O'Donoghue, lead author of the new study and a research scientist with Boston University's (BU) Center for Space Physics, told Space.com. 
The new finding could solve the mystery of the unusually high temperatures observed throughout Jupiter's upper atmosphere, which can't be explained by solar heating alone.[Jupiter's Great Red Spot: Photos of the Solar System's Biggest Storm
Generally, atmospheric temperatures on Jupiter are around 1,700 degrees F (around 930 degrees C), with the exception of areas above the planet's poles, which are heated by auroras. Above the Great Red Spot, however, the atmosphere is about 2,420 degrees F (about 1,330 degrees C), O'Donoghue said. 



Observations show that Jupiter's upper atmosphere — above the Great Red Spot — is hundreds of degrees hotter than anywhere else on the planet.
Observations show that Jupiter's upper atmosphere — above the Great Red Spot — is hundreds of degrees hotter than anywhere else on the planet.

Previous heat-distribution models suggested that Jupiter's atmosphere should be much cooler, largely because the planet is about fives times further from the sun than Earth is. So, having ruled out solar heating from above, the authors of the new research found evidence suggesting this atmospheric heating is largely driven by a combination of gravity waves and acoustic waves generated by turbulences in the atmosphere below the Great Red Spot. The new study was published today (July 27) in the journal Nature. 
Atmospheric gravity waves — not to be mistaken for gravitational waves — occur when pockets of air collide with things like mountains. The resulting effect is similar to when a pebble is dropped into a lake, and ripples then form on the surface of the water.  
Acoustic waves, on the other hand, are sound waves, which means they develop from compressions and refractions in the air and travel upward into the atmosphere. There, they encounter regions of lower density and break, much like ocean waves breaking on the shore. When this happens, the acoustic waves release stored kinetic energy and cause molecules and atoms in the air to move around more, which then raises the temperature, O'Donoghue said.  
"Changes in density around the Great Red Spot will shoot waves in all directions," O'Donoghue added. "We believe that acoustic waves are the majority of the heating cause, because gravity waves tend to ship their energy across the planet, rather than vertically up like acoustic waves." 



This illustration shows how a combination of gravity and acoustic waves transfers heat above the Great Red Spot to Jupiter's upper atmosphere.
This illustration shows how a combination of gravity and acoustic waves transfers heat above the Great Red Spot to Jupiter's upper atmosphere.
Credit: Art by Karen Teramura, UH IfA, James O'Donoghue

The GRS is a massive storm that rotates counterclockwise, colliding with the natural flow of molecules in the atmosphere, which are moving opposite the storm. These types of collisions create turbulence that creates acoustic and gravity waves, O'Donoghue said. 
Using data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea mountain in Hawaii, the researchers were able to measure the temperature of Jupiter's atmosphere, specifically around the GRS.  
"The Great Red Spot is the largest storm in the solar system — it is bigger than Earth itself — so it generates a lot of turbulence that impedes the flow of air in the atmosphere," O'Donoghue said. "It is kind of like when you stir a cup of coffee and you turn the spoon around and go the opposite way. Suddenly, there is a lot of sloshing [turbulence] going on that generates sound waves, or compressions of air, upwards for you to hear."  
The heat generated from the acoustic and gravity waves has a localized effect, which suggests there is a coupling between low and high altitudes, as energy is transferred from the lower atmosphere to the upper atmosphere. Previously, the connection between low and high altitudes was thought to be pretty much impossible because the distance is so vast, O'Donoghue explained.
"This new result from Jupiter provides the first evidence of upward coupling of energy that finds its way from the lower atmosphere to the upper atmosphere," Michael Mendillo, a professor of astronomy at BU, who was not involved with the study, told Space.com. "It's a very interesting observation — even on Earth, this mechanism is not well-studied or understood. If this happens on Jupiter, it is possible that it happens on all planets." 
Giant planets like Jupiter are measured to be hundreds of degrees warmer than current temperature models predict. Before now, the extremely warm temperatures observed in Jupiter's atmosphere have been difficult to explain, due to the lack of a known heat source, Tom Stallard, co-author of the new study and an associate professor of astronomy at the University of Leicester in the United Kingdom, told Space.com. 
"Sometimes, ironically, it is easier to see these features on a planet far away [from Earth]," said Stallar, who advised O'Donoghue throughout his research. In other words, "It's much more difficult to step back and see these broadscale effects … on Earth, so it's interesting to use Jupiter as a 'proxy' for what might be happening on other planets, and that includes Earth."
With the Juno spacecraft orbiting Jupiter, the researchers hope to get an up-close view of the Great Red Spot and isolate where the heat observed in the planet's upper atmosphere comes from. They also plan to study the fine details of smaller storms like Red Spot Jr., to see if there is heating above them as well. 

Wednesday, July 6, 2016

Inconvenient Truth: Most scientists are lousy statisticians; AAAS says "'Misunderstanding and misuse of statistical significance impedes science"

A important article published in the American Association for the Advancement of Science (AAAS) journal Science (June 2, 2016) addresses a very long-standing problem pervasive in virtually all areas of science: statistical and scientific reasoning are often not aligned, and the "misunderstanding and misuse of statistical significance [by scientists] impedes science," according to the AAAS.

The fact is that most scientists have a rudimentary understanding of statistics, typically obtained from a few undergraduate courses in statistics taken en route to a scientific career, yet statistics underpins the critical determination of "statistical significance" of scientific data and the validity of scientific conclusions. Most scientists do not consult statisticians to validate and confirm their statistical conclusions, which inenviably leads to false assumptions and conclusions based upon such simplistic analyses. My own field of science suffers from over-reliance on p-values, arbitrarily considering data with a p-value of < 0.05 to be "statistically significant" or "true," vs. data with a p-value of > 0.05 to be "insignificant" or "false," and thus likely un-publishable. A 'skilled' scientist knows well how to play the game of torturing the data, throwing out outliers, adding assumptions, etc. to lower the p-value to a publishable and "true" "statistically significant" 0.05 or less.

A prominent example is Michael Mann's infamous "hockey stick" global temperature reconstruction, arguably the most widely debunked piece of research in the history of science, debunked by both the Republican statistical experts (Wegman et al) and Democrat statistical experts (North et al). Both Congressional statistical expert evaluations of Mann's hockey stick, in addition to numerous gross statistical errors, faulted Mann for not consulting any statisticians prior to publication of his paper.

Sadly, the article admits that arbitrary assumptions of "statistically significant p-values," which vary widely between different scientific fields, are widely misused and misunderstood by scientists and are "out of alignment" with current statistical reasoning, concluding, "let us hope that the next century will see much progress in the inferential methods of science as in it's substance."



Related: Is much of climate science useless?
https://judithcurry.com/2016/07/06/is-much-of-current-climate-research-useless/

Wednesday, June 15, 2016

New paper demonstrates the gravito-thermal greenhouse effect on Jupiter is due to pressure, not greenhouse gases

A paper published in Science June 3, 2016, Peering through Jupiter's clouds with Radio Spectral Imaging, demonstrates the gravito-thermal greenhouse effect on Jupiter and that atmospheric temperatures are a function of pressure, independent of greenhouse gas concentrations. Jupiter is a gaseous planet with an atmosphere comprised almost entirely of the non-greenhouse gases hydrogen and helium, yet is capable of generating 67% more radiation than it receives from the Sun, and has estimated temperatures at the Jovian core of more than 20,000°C, more than three times as hot as the surface of the Sun. Jupiter, however, only receives 3.6% as much solar radiation per meter squared as the Earth. The only possible explanation for this "temperature enhancement" or "greenhouse effect" is atmospheric mass/pressure/gravity (the gravito-thermal greenhouse effect of Maxwell/Poisson/Clausius et al), and which is entirely independent of greenhouse gas concentrations. 

Prior work has confirmed the gravito-thermal greenhouse effect on 6 8 planets including Earth, and why this falsifies the theory of catastrophic man-made global warming. On the basis of this new paper, we find the gravito-thermal greenhouse effect also holds for Jupiter and that the pressure vs. temperature curve satisfies the Poisson Relation of the gravito-thermal greenhouse effect.

Referring to fig. 1 of the paper, we find at 0.1 bar pressure on Jupiter, the corresponding temperature is~112°K, and at 11 bars pressure corresponds to 400°K or 260°F:


Fig 1 from the paper. The dotted line is the atmospheric temperature vs. pressure curve on Jupiter. At 11 bars pressure, the temperature is 400°K or 127°C or 260°F.  
This satisfies the Poisson Relation (which in turn is derived from the Ideal Gas Law) previously demonstrated on 6 8 other celestial bodies in our solar system:


T/To = (P/Po)^0.286 ~= 400°K/112°K = (11 bar/0.1 bar)^.286

and once again demonstrates that the catastrophic anthropogenic global warming (CAGW) theory is a myth, that atmospheric temperatures are controlled by mass/gravity/pressure and are independent of greenhouse gas concentrations on any of these 9 planets with atmospheres, including Earth. Adding additional CO2 plant food to the atmosphere will undoubtedly green the Earth, but Earth's climate sensitivity to CO2 is effectively zero. 



Fig. 7. 
a)   Dry adiabatic response of the air/surface temperature ratio to pressure changes in the free atmosphere according to Poisson’s formula. The reference pressure is arbitrarily assumed to be po=100 kPa;b) The SB radiation law expressed as a response of a blackbody temperature ratio to variation in photon pressure (see text for details).



image
image
Figure 6. Temperature/potential temperature ratio as a function of atmospheric pressure according to the Poisson formula based on the Gas Law (Po = 100 kPa.). Note the striking similarity in shape with the curve in Fig. 5.

NASA Jupiter Fact Sheet


Jupiter

Jupiter/Earth Comparison


Bulk parameters

                                   Jupiter      Earth   Ratio (Jupiter/Earth)
Mass (1024 kg)                      1,898.19    5.9724      317.83 
Volume (1010 km3)                 143,128     108.321      1321.33
Radius (1 bar level) (km)
    Equatorial                     71,492       6,378.1      11.209    
    Polar                          66,854       6,356.8      10.517
Volumetric mean radius (km)        69,911       6,371.0      10.973
Ellipticity                         0.06487     0.00335      19.36 
Mean density (kg/m3)                1,326       5,514         0.240 
Gravity (eq., 1 bar) (m/s2)        24.79        9.80          2.530 
Acceleration (eq., 1 bar) (m/s2)   23.12        9.78          2.364 
Escape velocity (km/s)             59.5        11.19          5.32
GM (x 106 km3/s2)                 126.687       0.39860     317.83 
Bond albedo                         0.343       0.306         1.12
Visual geometric albedo             0.52        0.367         1.42  
Visual magnitude V(1,0)            -9.40       -3.86           -
Solar irradiance (W/m2)            50.26     1361.0           0.037
Black-body temperature (K)        109.9       254.0           0.433
Moment of inertia (I/MR2)           0.254       0.3308        0.768 
J2 (x 10-6)                        14,736    1082.63         13.611    
Number of natural satellites       67           1
Planetary ring system             Yes          No

Orbital parameters

                                   Jupiter      Earth   Ratio (Jupiter/Earth)
Semimajor axis (106 km)             778.57      149.60        5.204   
Sidereal orbit period (days)      4,332.589     365.256      11.862   
Tropical orbit period (days)      4,330.595     365.242      11.857
Perihelion (106 km)                 740.52      147.09        5.034      
Aphelion (106 km)                   816.62      152.10        5.369
Synodic period (days)               398.88        -             -
Mean orbital velocity (km/s)         13.06       29.78        0.439    
Max. orbital velocity (km/s)         13.72       30.29        0.453        
Min. orbital velocity (km/s)         12.44       29.29        0.425       
Orbit inclination (deg)               1.304       0.000         -
Orbit eccentricity                    0.0489      0.0167      2.928
Sidereal rotation period (hours)      9.9250*    23.9345      0.415  
Length of day (hrs)                   9.9259     24.0000      0.414
Obliquity to orbit (deg)              3.13       23.44        0.134 
Inclination of equator (deg)          3.13       23.44        0.134                                               
* System III (1965.0) coordinates

Jovian Atmosphere

Surface Pressure: >>1000 bars  
Temperature at 1 bar: 165 K (-108 C)
Temperature at 0.1 bar: 112 K (-161 C)
Density at 1 bar: 0.16 kg/m3
Wind speeds
   Up to 150 m/s<30 40="" degrees="" latitude="" m="" s="" to="" up="">
Scale height: 27 km
Mean molecular weight: 2.22 
Atmospheric composition (by volume, uncertainty in parentheses)
    Major:       Molecular hydrogen (H2) - 89.8% (2.0%); Helium (He) - 10.2% (2.0%)
    Minor (ppm): Methane (CH4) - 3000 (1000); Ammonia (NH3) - 260 (40);
                 Hydrogen Deuteride (HD) - 28 (10); Ethane (C2H6) - 5.8 (1.5);
                 Water (H2O) - 4 (varies with pressure)
    Aerosols:    Ammonia ice, water ice, ammonia hydrosulfide